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Intermittent chaos in dense gaseouslike media driven by coupling cross thermodiffusive effects
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Intermittent chaotic behavior induced by a thermodiffusive coupling is investigated by analysis of a five-
mode(Lorenz-like truncated model describing a binary, diluted solution which behaves as a gaslike system.
The obtained nonlinear equations coherently agree with the marginal stability locus point when the absence of
a stationary state for the mass transfer is considered. For a wide range of reduced Rayleigh number values
we show that the truncated model exhibits the Pomeau-Manneville intermittency route to chaos when the
control (Soret-based phenomenological coefficients) approaches some critical valugs).. Numerical
simulations evaluating the generalized Lyapunov exponent against the control parameter displacement close to
the intermittency threshold, (1) vs ((5).—(6)), are reported inside the chaotic region. The achieved results
agree reasonably with theoretical predictiof&1063-651X97)12112-2

PACS numbefs): 47.27.Cn, 47.20.Ky, 47.52j, 51.10+y

INTRODUCTION ited gaslike solution heated from below, and in the presence
of a concentration gradiefi4].
The importance of “transverse(Soret crosseffects, al- It is known that large systems of nonlinear coupled maps

though consisting of a weak coupling between thermal grafthe so-called coupled map lattigefl5] are the simplest
dient and mass flux, has been henceforth recognized in semodels exhibiting alternation between turbulent and laminar
eral physicochemical phenome4,2]. Soret gradients in regions in space, which is usually denotedspatiotemporal
solids [3] (especially alloys and metals; see also electricaintermittency This type of coupled map lattice is constructed
cross-phenomenpd]) have been investigated by measure-(as, for example, the ones introduced by Creatd Mannev-
ments of the heat of transpdas well as of(intendiffusion ille [16,17]) by coupling together maps exhibiting both cha-
coefficientg of different atomic species in diffusion and self- otic and laminar states. The mechanism leading to intermit-
diffusion phenomena occurring in a crystal lattif®5].  tency[18] is due to thecoupling induceglinterplay between
More recently, by a sort of “background” internal friction, laminar and turbulent regions. Roughly speaking, the trajec-
which has been interpreted according to point-defect relaxtory “absorbed” in some laminar states may be pulled back
ations driven by nonlinear thermal cross-effdék there are  into chaotic regions thank t@oupling interactions between
reasons to believe that Soret-like transverse contributiongiaps. Without coupling, the laminar states are “fully ab-
could play a primary role in some fields of material sciencesorbing” (i.e., the trajectory cannot return into a chaotic
In a liquid (mixture) [7,8], as the thermal diffusivityy is  state.

much larger than the diffusion coefficieDt, the temperature Here our major goal will be to show that, for our nonlin-
fluctuations can be neglected, and Soret gradient-induced egar five-mode truncated model, a role of the coupling Soret-
fects are usually dealt with by taking advantage of the stabased gradient is to drive the systgjust as in the coupled
tionary state for the mass transfer, i.8,=0 [9,10]. This map latticey from stable laminar motion into intermittent
condition is a constraint to be considered in developing &haotic motion(or vice versa

classical linear analysis of the stability and in writing any  Taking the cross-term as the control parameter, the model
related truncated moddl1l1]. In the present case, since exhibits the well defined routes to chaos, originally proposed
x/D>1 [9,12), the aforesaid constraint for the mass flux for the Lorenz 1963 modelhereafterL63) by Manneville
cannot be used, and a simple recast of the linear stabilitand Pomea(i19], namely, the so callethngent bifurcation
analysis is required. Accordingly, in a nonstationary statejntermittency In the intermittent region, the reguldaminan
thermal and diffusive Lorenz-like dynamics are expected tdoehavior is “randomly” disrupted by a “burst” of chaotic-
be coupled by a transverg8ore} coefficient[11]. More- ity of finite duration, after which a new laminar phase takes
over, in a gaseouslike system, this cross-contribution iglace, and so on. The instability leading to the burst is due to
greater than in liquids and/or solids and, in principle, apprethe fact that the modulus of at least one Floquet multiplier
ciably depends on temperatui@ 12). [20] crosses the unit circle along the real axistat.

In this paper, intermittency induced by transverse Soret- Results will be reported relative to the transition occurring
based gradients has been attempted for a dense gaslike n@&-the critical control parameter value0.0955, provided
dium, whose dynamics is described by a nonlinear five-modwith a reduced Rayleigh number-167. Indeed, as we shall
Lorenz-like model. As usual, deterministic equations are obsee, the system also exhibits tangent bifurcation intermit-
tained by a severe truncation of a modal expansion of théency for smaller values.
governing finite amplitude convectidii3] in a binary dilu- In order to capture the influence of fluctuations on the
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system “predictability” close to the intermittency threshold, _ 27 1+P+Apd)

we shall employ results following from the general thermo- Rg=—mt—"—""",

dynamical theory of dynamical systems which lead to the 4 P-P-Bpp(d)

definition of generalized Lyapunov exponehtsy). Accord-

ingly, a reasonable definition of the predictability time of the 27 149

system, which takes into account fluctuations, can be given. Re=—mt—er—, 3)
In the intermittent region, an inverse predicatability time will 4 P-—P-Bpx6)

be derived numerically, and compared with theoretical re-

sults based on renormalization argumgz). where Avs—[P(L+PJL+P+ B+ P(L+P- P)/[PP:P
+P] andBpp=[P(PP+P—P)/PP+P+P].
I MARGINAL LOCUS OF STABILITY All mathematical details which, starting from the thermo-

Consider the Soret cross-effect occurring in a gaslike, bifialine problem, lead to Ed2) (as well as the investigation
nary, and diluted solutiof9—11]. The starting phenomeno- of stability and/or instability transitions predicted by the lo-

logical equations are of the fornfig,2]; cus poinj are not important here. In fact, they follow directly
’ from the linear analysis applied to the stability of infinitesi-
I = —KVT mal disturbances near the mechani¢plre conductive
q L

equilibrium. Nevertheless, a summary of the most important
steps is reported in Appendixes A and B. The proof of va-
lidity of marginal equationg2) will be given in Sec. Il,
where we show the agreement with the linear theory results
whereT is the temperature; is the mole fraction of one of  following from the linearization of the involved deterministic
two componentsp is the density,J(’1 is the thermal flux in- model.

cluding the enthalpy transpot; is the matter flux due toy,

andK, D, andD’ are the Fourier, Fick, and Soret coeffi-

cients, respectively. The applied equations consist of the IIl. TRUNCATED MODEL

usual balance and state equatipbl As in theL63 model(see Ref[22] and Appendix G, one

As the stationary equilibrium condition for the mass flux can approximate the nondimensional stream funciiomnd
does not apply, namely, # 0, from application of the linear PP

analysis to the stability of infinitesimal disturban¢@s7,13,  t€mperature and mass concentratidmnd &, with
and some algeabric passages, the marginal stability locus

point becomes - (a®+ 7?)

J1=—pC1(1—c1)D'VT—pDVey, 1)

T\/EXls;ir'l( aX)sinwZ2),

(1+(8))R—R=2 7%

52 —  Ry(a) _ _
P [ P (9 P2 f=e [ V2X,coq aX)sin(mZ) — Xgsin(2m2)],
— 1+ —- R— I a
(1+P)(P+P)|~ P (1+P)|" (1+P)(P+P) 4

=g, )

0|

A

—:—Rl(a)

[ V2X,coq aX)sin(mZ) — Xgsin(2m2)],

€
whereR andR are the thermal and solutal Rayleigh num- 4

bers,P and P are the Prandtl and Schmidt numbers and the , - .
o — — where X;'s are related to the coefficients of the Fourier de-
Soret-based contribution{5)=S;(ym/ap){c1)(1—{Cy))

- "PJ velopment,X and Z are nondimensional spatial coordinates,
contains the thermal and mass expansivitigsand vy, to-

. e ) , .« is a non-dimensional wave numbd®; is the marginal
gether with the contribution of vertical concentration profile,

which is approximated to its mean value, (& ~<E ) [10] stability « locus in the Beard problem, ande=AT/
The Soret coefficier;=D'/D coherentlylintrodluces the |AT|==1 together with e=Ac;/[Acy|= il_ determine
contribution of the temperature gradient into the mass flu{he quadrant of theR,R) plane. A comparison between
J;. In fact, whenS;>0, from analytical expressions for the the original Fourier seriegsee Appendix € and Egs.
marginal stability locus point2), it may be observed that in (4) allows a relationship between th¢ coefficients and
the R>0 half-plane, corresponding to positidestabiliz- the real and imaginary parts of the Fourier amplitudes
ing) temperature gradient, we have an increase in th&o be written as<;=2\2a[ a/Ry(a)]Y*¥{Y, X,= [2\27
unstable region; conversely, fdR<O0, the stable region Ri(a)]O%), Xs=e[2m/Ri(a)10F],  Xs=€[Ri(a)/
increases. Accordingly, the intersection point of the station2 2711 ) andXs= €[R;(a)/27]T{

. . . . 1,1 0?2) :
ary and oscillatory marginal stability locus in the thermo-  ater substituting Eq(4) into the governing physical sys-

haline convection, which isT=(R;,R;) where Ry  tem [Eq. (C1) in Appendix G and introducing the adimen-
=2 7 (1+P)/(P-P)], andR;= 4 #*[(1+P)/(P—P)],in  sional “reduced” quantities r(a)=R/R(a), I (@)=
the case when the Soret effect moves to the POINR/R, (a), andb(a) =472/ (7%+ a?), by applying the Galer-
S=(Rs,Rg), being now kin procedurg23] one arrives at
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with the vertex on the axis which defines a region of the

_P vitr
X1~ eXp+ E§X4>, (r,r) plane where the solutions of E¢) must be looked
for. These are

)-(l:_P

X2=—X1X3+eer—X2, 1
() XZ=—=V-Bs+ A,
2

1S —
X3=X;Xo,—bXg, (5) V2
: P et Y R A ®
X4:_X1X5+erl_€€<5>X2_EX4, 1S \/E ) o

5(5: X1X4_ b

1
65_<5>X3+ %Xs) (1 X(lss)ZEV_B(s_ \/K(s,

Obviously, when the Soret cross-term is neglected and . 1

e=—e=1 Egs.(5) reduce to a five-mode truncated model X(ls): - ﬁ —Bs— \/Ka-
for the thermohaline convectiofil0,14], with temperature
and concentration gradients acting oppositely.

Thus, defining z=(12)V-Bs+JA;=X{¥  and

Stationary states and stability y=(12)\V—Bs— A =X{, the four stationary solutions
The components of the stationary stdt24] are provided Can be written as
by
z -z
PXys(X1s"+ BsX12+C5) =0 7 .
o ebr 5 —ebr 5
Bs=b[1-r(1-B(8)]+a(l+T), Z+b Z+b
— 2 2
Cs=ab[ 1 +1-r(1+(3))], (6) o or -
o o XP = Z’+b . X@= Z’+b ,
_ 2 _ _
wherea=b(P/P)? and 8.= e(1+P/P)—1, and by _ P 7 _ P z
ebr=- 5 —ebr= >
Xis P z+a P z°+a
Xog=ebr ———,
2S Xis Z2 Z2
€r €r
, Z’+a Z’+a
X 9
X3s=€r b-l—;(sz , ©
1s y -y
— P X5 [— T y y
X, o= eb—- r + S ebr —ebr
SRRV L b+x§s< ) y?+b y?+b
bl = +Xis 2 2
P y y
o 3) €r > @ €r 2
5 \2 X§= y“+b o, Xg'= y“+b
X| Be BXlS) —b ] @) ——P y ——F Yy
Eb F—_- - Eb =
Py*+a Py’+a
. x? _ r P 2 2
X5S—€ ;-S ’rr—eb > <5> 1+%‘|, er y cr y
ol B X2 { b+X1s P y?+a y>+a
P S (10)
so thatXo=0 is obviously stationary. Accordingly, with regard to Eqg6)—(10) and omitting theS

. . . - i (1) y(2) (3) — w(4) i
To obtain the other stationary points, it is necessary tdmiexes, one hasX3s=Xz5 and Xy5=Xzs5, while

solve the above biquadratic equatiéd). To this end, in  X{3.=—X{3, and X(fzj,f _1(1[,12),4- The domains of the
addition toB; andCs, another important expression is given pairs X¢? and X§ in the (r,r) plane descend from the
by the discriminant of Eq(6), namely,A 5= B§—4C,;>O. In  analysis of the aforesaid biquadratic equatiéh and are

particular, the equatior ;=0 is that of a simple parabola given, respectively, by the following conditiof%6]:
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DY) =(B-UC)N(B-UA-), (11)  Cartesian produgtandD;,C D) whenr <0, as can be rea-
sonably expected from the results of the linear thdmse
DY =B_UC-UA-, (120  Egs.(2)]. Contributions opposing to stability, coming from

the signs of the two gradients, are also pointed out in the new
where A>E{(r_,r);A5> 0} and A<E{(r_,r);A5< 0}, expression foiXsg, the distortion of the stationary concen-
A=B,C,A, while X, is defined everywhere, that is, tration profile, which decreases in the presence of the posi-
=R2. tive temperature gradient.
If D,, and D3, denote the domains of the above pairs in Indicating with X; the coordinate components around a
the absence of the Soret effdttiermohaline convectignif generic stationary solution, and settidg=X;s+ 8x;, the
Sr>0 one hasD{9) x D) CD;,X D3, whenr >0 (X is the linearized system in the perturbatiofs; is

_P?

- P €P O — E— 0
5 P
. ! e(r—Xss) -1 _XZLS 0 0 6Xl
X, OX3
. XZS XlS - b O O
OX3 | = P OX3 | . (13
5X4 6( r _XSS) _66_<5> 0 - E_ _XlS 5X4
8X5 6)(5

X4S 0 - E€_b< 5> xlS —b=

The characteristic equation fofy considers the Soret con- ingly ,5'1—,3—1=2[1+(P/P_)] (or equivalently
tribution only in the known term of a three-degree polyno- ' — ' ’
(0B IAT)A1=0=2[1+(P/P)]5(AT)). Such a property

mial:
could be an interesting issue left for future work.
P
N+b=]{ N3+
P

(A t+Db) (14 [ll. INTERMITTENCY IN CHAOTIC

DYNAMICAL SYSTEMS

P
P+—=x+1]|\2
P

p In this section we shall review some basic mathematical
+p :r_—r+1+_+4 (15  definitions and concepts on sensitive dependence on initial
conditions, which will be employed in Sec. IV. Let us con-
sider a dynamical system R\ defined by the set of equa-
p2 o tions
—(:)[(1+(5))r—r—1]]=0. (16
P Xi=fi(Xg, o Xn)y i=1,...N. (18

In this way, a perfect agreement with the results of the linear

theory previously obtainefsee Eqs(2)] is achieved. Indeed, An infinitesimal disturbanc&X(t) evolves according to

Xo is stable if and only if of,
. 8Xi(1)=J;;(1) 8X;(t)  with J”(t)—&x :

— J

(L+(&M)r—r <1, 17 X=X(t) (19
P2 ( 5 |r We can define the response functig(t,0) as
(P+P)(1+P) (1+P)
R(t,00= X (20)
T < X0

(P+P)(1+ P)
The Oseledec theoref25] tell us that, fort— o and for
Note that positions of the stationary stai@ and (7), as  almost all(in the sense of measure thepiyitial conditions
well as domaing11) and(12), depend on3, which is non-  6X(0), we have
continous when the sign of the temperature difference across
upper and lower plates changes, namel{f,—0. Accord- R(t,00—eM!, (21)
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where\; is called themaximum Lyapunov exponeft6].  where O=ty<t;<---<t;<t;,<---<ty=t. Here we
Naively, one may guess th.’i\tl_1 is the only characteristic view the trajectory as a sequenceMftrajectories. By intro-
time scale of the error growth. ducing the notation

Considering times sufficiently long to have an exponential

. ; St ) ~eYiltittiog)
growth rate for the response functi®{t,0), we can write R(ti ti—q)~enii-t, (29
R(1,0)~e", 22) we have
M
wherey is thelocal error growth exponent, in the sense that e7‘=e2 ilti—ti—g) (30)
i=1 '

it depends on the particular initial condition under consider-
ation. Due to fluctuations om [27,28, even assuming that Therefore, taking;—t,_;=At for anyi, we havet=MAt
is large enough to observe an exponential growth rate ofq4
R(t,0), A[l is not the only relevant time scale: depending on
initial conditions, dynamical systems can show, on an em- 1
pirical basis, states or configurations which can be predicted Y= M~ Yi- (32)
for time longer or shorter than; *. a

Following Paladin and Vulpiani[29], Benzi and Let Py(y) be the probability of havingy at the time
Carnevald 30] and Benziet al. [31], in order to capture in- t=MAt. The quantity(R(t,0)%) can be computed by the
formation on the large fluctuations R(t,0), let us introduce integral
the moments

M

(R(t,0%) (23) (R(t,0)%) = f Pu(y)e"Mitdy, (32)
where( ) is the average over different initial conditions. It is now clear that, foM — oo, Py(y)— 8(y—X\4). For fi-
If many times scales characterize the error growth, welite M, the theory of large deviatiorior a general exposi-
should have tion see VaradhafB4] and Ellis[35]) suggests that
(R(1,0)%) ~ (@, (24) Pu(y)~e S7May (33

_ _ ) , whereS(y)=0 andS(y)=0 for y=X\;. In the language of
with L(q) a nonlinear function of). TheL(q)'s are the SO  |arge deviation theoryS(y) is called Cramer functionor
called generalized Lyapunov exponeri2,33. As an ex-  Cramer entropyFor a description of the link with the statis-
ample, let us consider the simple one-dimensional “tentjcal mechanics formalism, see Ref&9,31,33.

map” [20] Equation (33) can be rigorously proved to be valid in
many cases. Inserting EJ) into Eq.(32), by saddle-point
ﬁ (0=X=c) integration we obtain
c
Xn+1= 1-X, (25 (R(t,O)q>~f el7a=S(IMALY,_ gl(@Mat (34)
1= (c<X=1),
where
wherec €[ 0,1] is the parameter which characterizes the two _ B
different (if c# 1/2) slopes of the map. L(a)=sup[dy—S(y)]. (35
Itis easy to verify{31] that the expression fdr(q) reads |t follows from Eg. (35) that, for anyq, a valuey, exists
such that
L(g)=In[ct 9+ (1—c)t9]. (26)
dS(y) 3 36
For c close to zero, the error growth of the system can be dy | =a (36)
either in the “fast” state(if Xe[0,c]), or in the “slow” LRL

state(if Xe[c,1]). ThusL(q) is no longer characterized by Thus

a single time scale. Notice that the situation changes when

c= 1/2. In this case, the map has only one slope, and Eq. L(@)=ayq—S(vq) 37
(26) reduces to

and
L(@)=a\y, (27 dL(q) dyy, dS(yg)
“da Y949 T dg Ve (38
with A;=In2. Relation(27) means that, is the only rel- q a q
evant time scale characterizing the error growth. From Eq.(37), we deduce that, fog=0, yo=\,; there-
Coming back to the general case, we can revR{tg0) as  fore from Eq.(38) it follows that
M _dL(q)
R(t,0=]1 R(t;.ti_y), (28) Mg | (39)
i=1 q=0
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The quantitiesy, are the characteristic time scales describing R
the predictability fluctuations of the dynamical system. ‘ e

There is no general theory about the shape ofSpe)
function, as different systems may have different predictabil-
ity fluctuations.

Let us consider the response function

R(t,t")= M (40
’ |oX(t)]
and observe that it obeys the multiplicative rule
R(t,t")=R(t,t")R(t",t") (41)

for any t”. Thus, in order to look for a parametrization of
P:(y), one is led to consider all possible probability func-
tions P(y) which are left invariant with respect to the mul-
tiplicative transformatiori41). In the following, we shall call
this class of pro_bability functionsovgriant By makilng the FIG. 1. Time record of the&s coordinate in the five-mode Lo-
strong assumptlon of weak correlatlpn _bet\{véé(m,t )and e, model(5). (a) Stable periodic motion appears fo8) (here
R(t",t), an important category of distributions turn out to g gg6) just above threshokis).~0.0955. (b) Just below(s),
be covariant: it is the class of thefinitively divisible distri-  ((5)~0.095) the regular oscillations are “randomly” interrupted
butions(IDD’s) [36]. by chaotic “bursts” which become more frequent &8) is de-
creasedcase(c) with (5)~0.093. In the thermohaline convection
A. Gaussian case (d), i.e.,{8)=0, the system behaves chaotically during all the ob-

The G ian distribution is th t | | erved time. TheXs coordinate is ranging between72 and—23
, € Lsaussian distribution ,'S. € most popular éxamples Qj ;e the dimensionless time between 10885 and 11235 in all cases
IDD’s. The idea of using IDD’s is closely connected to simi- (linear scales

lar studies performed in the framework of the statistical
theory of turbulencg37] and of the theory of atmospheric o the predictability time, and fluctuations of the local

predictability[31]. , Lyapunov exponeny, are proposed there by the authors.
A Gaussian law forP,(y) means a quadratic shape for = A fyrther way to take into account the effects of fluctua-

S(v) [29] tion was recently proposed by Bergtial.in Ref.[31], in the
(o y 2 framework of the theory of atmospheric predictability. Fol-
Sy =(y=A) 2, (42) lowing Ref.[31], a reasonable definition of the characteristic

and a log-normal distribution for the response functionPredictability imer of the system, which takes into account

-

R(t,0), the effects of fluctuations, can be given as
1 1
= ; —[(InR=\41)2/2pt] ~ _ ’ 7)
P(R)= e 1 . (43) () N+
Ry2 7 ut

which will turn out to be useful in the following when the

system behavior near a bifurcation intermittency will be in-

vestigated. A deep discussion on the reliability of the log-

Ny =(INR(t,0))/t, (44) nqrmal approximation can be found elsewhg2®], and thus
will not be reported here.

In this case, the probability distribution is fully characterized
by only two parameters:

w=[{(InR(t,0))%)— (InR(t,0))?]/t,
IV. INTERMITTENCY ROUTE TO CHAOS DRIVEN
where\ ; is the maximum Lyapunov exponent, apds the BY THE TRANSVERSE EFFECT
second cumulant, calleidtermittency.

The moments of the distributiof3) give For nonlinear dissipative dynamical systems, there are

different well defined[39] patterns of behavior(*“sce-
L(q)=A,q+ 2 ug?, (45) _narios”), as the _system i; driver_1 from stable laminar motion
into chaotic motion. In this section we present the results of

while the most probable value of the response function angome numerical experiments performed on the five-mode

the mean value are, respectively, Lorenz model(5). In our experiments, where the external
control parameter is just the cross-tef#), the intermittency
R=eMtl-u/Ay) <R)=e"l‘[1+“’<2"l>]. (46) routes to chaos originally proposed for thé3 model by

Manneville and Pomealll 9] will be evidenced. All numeri-
Arguments reported by Crisardt al. in Ref.[38] show that cal integrations were made by using a fourth-order Runge-
the predictability problem is reduced to a “first exit prob- Kutta scheme withAt=0.005. Figure 1 shows the time de-
lem.” Relations between the probability distribution function pendence oKs (a similar behavior is observed for the other
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) L FIG. 3. Behavior of the ratig./\ 1, vs the displacement from the
FIG. 2. An expanded view of the Poincaneap along theX, jpermittency threshold{ 8).=0.0955. Notice the transition, for
coordinate. Case(q) corrt_espond_s to the mtermltt_ency transition (8)=0.065, from weak f/\;<1) to strong g/\,>1) intermit-
when(8)=( ). while (b) is relative to{ ) values slightly beyond tency.
the intermittency thresholds).. Note that at the transition the
“curve” is tangent to the diagonal line, while a small géfchan-  panded view in Fig. 2. It can be seen that, o) =( ). the
nel”) appears fof 5) slightly below( ). . Here, a trajectory spends “curve” is just tangent to the diagonal lingsee Fig. 23)],
a significant amount of time. The motion along the channel reprewhile for ( 8) <( ). [see Fig. &)] the curve is lifted up and
sents the phase of the laminar motion. a “‘channel” appears. The graphic iteration technique shows
that a trajectory spends a significant amount of time traveling
along the channel. Such a time corresponds to the laminar

Xi+5) when four different values of the control parameterphase of the motion illustrated both by Figgbjland 1c).

(9) are considered, and when theparameter is 167. The Based on the use of a renormalizati@ealing argument

other model parametetkept fixed in the present stulgre 1511 s nossible to determine the average periodic burst
r =50, e=1 and e=—1, corresponding to a thermodiffu- duration according to small values of the difference
sive convection with opposite temperature and concentratiopg)c_<5>, As a result, the scaling argument gives a number

gradients. Moreover, for the sake of simplicity, on investi-of iterations, and therefore a characteristic “predictability
gating the thermal cross-contribution in the limit of a gasliketime” 7 of the order of

behavior, the Prandtl and Schmidt numbers were setted to 1
P—8 andP=10. T~((6)c—(5) " (48)
Above the critical value, which turned out to be which is necessary to cross the channel.
(8)c~0.0955, numerical simulations show regular periodic Near the critical pointgd)., the influence of fluctuations
oscillations[see Fig. 1a)]; for () slightly below(5). the is strong. This can be concluded from Fig. 3, where the ratio
system appears to switch from periodic to chaotic behaviobetween the maximum Lyapunov exponagtand the inter-
[see Fig. b)]. As (8) decrease$see Fig. 1c)], the time  mittency u [see Eqs.(44)] is evaluated when the control
spent in chaotic motion increases, while the duration of thebaramete( 5) approaches the critical poifs).=0.0955. As
periodic stages decreases, until the model behaves corfif€ can see, whef)=0.065 a transition fromu/x ;<1 to
pletely chaotically. This corresponds t@)=0 [see Fig. #/A1>1, i.e., from weak to strong intermittency, occurs.
1(d)], i.e., to the thermohaline reginj&0]. The word “transition” is used, in this context, in a broader
Since the bifurcation event can be tangent or saddle nod€ense than elsewhere, when the tangent bifurcation has been
such a type of intermittency route to chaos is sometimediscussed. Even variations in the chaoticity degree, which
calledtangent bifurcation intermittencyt has been observed |mpI|e§ #/hy>1, are included in the class of intermittent
during many experimentgsee, for example, Jeffries and Pehaviors29]. _
PereZ40)), particularly when the focused system also shows Recalling definitiong46) for the most probable valuB
the period-doubling route to chaos. and the mean valuéR), taking R as representative of the
To analyze the behaviors reported in Fig. 1, following distribution turns out to be inadequate f66)=0.065. In
Manneville and Pomeall 9] consider the Poincan@ap de-  fact, instead of the turbulent chaotic regime, characterized by
fined asX,(n+1)=g[Xy(n),(6)], X5(n) being theX, co-  a positive exponent (lim,..(R)=), a laminar stable phase
ordinate at thath crossing of the plan¥, =0, and endowed (jim,_ ,R=0) is predicted. In the phase transition jargon
with the conditionX;>0. After performing numerical simu- this means that the mean field picture fully breaks down.
lations on model5), the resulting map is shown in an ex- Chaotic behavior near a bifurcation intermittency is thus no
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V. CONCLUSIONS

(1) Intermittent chaos in a five-mode truncated model has
been studied in a gaseous binary system endowed with trans-
p verse(Soret(5)) coefficient in a nonstationary state for the

o mass transfer. Accordingly, we have the following.

e (i) From performed numerical experiments, when the ex-
pra ternal control paramet€is) approaches some critical values
o,o (6)c, one can observe routes to chaos as proposed by Man-

y b & neville and Pomeail9] for the L63 model. The transition

g occurring when(8).~0.0955, and when the reduced Ray-
p" leigh number ~ 167, were reported. The system also exhib-
08 | ited the tangent bifurcation intermittency whenassumed
smaller values. As an example, fot- 38, we identified two
. critical points{6).~0.7222 and 0.9799, respectively.

/0 (i) Fluctuations in the chaotic behavior near the bifurca-

L(1)

07 + o4

o o/o’ tion at{8).~0.0955 have been detected, and a neighborhood
L , inside the chaotic zone where the mean field picture fully

%5 16 breaks down has been recognized. Then, correspondingly,
<> - <6> the influence of fluctuations on the chaotic behavior must

necessarily be accounted for. It must be concluded that, in
FIG. 4. Generalized Lyapunov exponent behavidil), vs the  such a region, the Lyapunov exponent is not sufficient for
displacement from the intermittency threshglé).=0.0955. No-  characterizing chaos and predictability time exhaustively.
tice that the predicted scaling law(1)~(({5).—(8))"? (dashed  Generalized Lyapunov exponert$q) have been employed
line) closely agrees with the numerical simulatidegcles, which  to define coherently the predictability time as depending on
is affected by a relative uncertainty of about 8%. fluctuation effects.

(i) The inverse predictability time, i.el. (1), vs dis-
longer characterized by the sole Lyapunov exponent. Thelacement from the critical poirts).~0.0955 has been de-
effect of fluctuations is important, and must be taken intorived numerically and compared with theoretical scaling-
account to characterize accurately the model predictabilitlaw-based results. Numerical simulations reasonably agree
As a definition of the characteristic predictability time  with theoretical predictions.
which reasonably takes into account the influence of fluctua- (2) The analysis of linear stability and stationary states,
tions, consider formulg47). In the intermittent region, it applied to the model, provided results in agreement with
follows from Eq.(48) that the generalized Lypaunov expo- those of classical hydrodynamimarginal locus of stability
nentL(1) should vary as All stationary states and stability regions have been derived

_ B 112 parametrically(in r,r ,P,P and{é)). A term which is not
LD~ {S)e= (N ™ (49 continuous when the sign of the temperature gradient is
L(1) is plotted in Fig. 4 versus the displacement from thechanged has also appeared.
intermittency thresholds).=0.0955. As one can verify, in a
range of (&) values just below )., the scaling law for ACKNOWLEDGMENTS
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Small deviations from theoretical predictions can be at-
tributed to the slow convergence of the indicator at the APPENDIX A: REMARKS ON THE MARGINAL LOCUS
intermittency threshold. The relative errors generated in the OF STABILITY IN THE THERMO-SOLUTAL
fits is of the order of 8%. CONVECTION

We conclude by observing that, when the transverse Soret ] . ]
coefficient is used as a control parameter, routes to chaos via We conS|dere_d a linear .theory developed in .normal
tangent bifurcations intermittency seem to be a quite comModes, as obtained when ideal boundary conditions are
mon feature, in a wide range ofparameter values. Intermit- adopted: free, conducting, permeable, and indefinitely ex-
tency routes to chaos via tangent bifurcation intermittencyfended surfacesif the layer thickness is not too thin, the
occur in fact not only for large values of(as it is the case Marangoni effect can be ignor¢d1,42). Moreover,
with the L63 model; see Ref.19]). For instance, we have
identified other tangent bifurcations for=38 (the other pa-
rameters are kept unchanged with respect to the case already
discussegwhen the control parametép) is ~0.7222 and o R
~0.9799, respectively. I(z,t)=Ti(2)e'*, weC

F(r,t)zf?k(z,t)eik'fdk, (A1)
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were the general Fourier developments for the infinitesimal
disturbancesgvelocity components, temperature, and concen-
tration perturbations wherer=(x,y) andk=(ky,ky) is the =1% (x,»,D,D"; Ty, T4,Co,Cq.d), (B2)
relative bidimensional wave number.

The linear theory of stability applied to perturbatiqiAdl) . i =
yields the criteria to predict the stable-to-unstable transitior\ﬂhere E‘e symbol z indicates a fixed z2  c(2)
of the system being considered. In thenBed problem, itis 0~ PZ=Co~[(Co—Ca)/d]z. Now, with the change of
well known [43,44 that, for a given adimensional wave units c;—C,, the dependence oF, on all parameters
numbera= (k5 +ky)*?d, whered is the layer thickness, we changes, i.e',— ' bUtI'%, remains unchanged, namely,
have stability if and only ifR<R;(a)=(m?+a?)3/a?,
where R;(«a) is the “marginal stability” locus point, and
R=gaapd*/ vy is the Rayleigh number. It follows that the
critical Rayleigh numbeR_., expected to produce instability,

is given byR.=min{Ry(a)} =& 7*, whena=a.=2"7,
The quantityR contains the gravity constagt the tempera- Accordingly, the application of the linear theof¥3,24) to

ture gradiena=AT/d (positive, in the adopted convention, gerive the stability conditions must be subject, for any unity
if the fluid is heated from beloyythe expansivity coefficient change, to constrair().

ap, the kinematic viscosity, the thermal diffusivityy, and
the layer thicknessl.

T,*Tio(P,P,Sr €, €,R,R,Cy)

= T(P,P.Srie, €. R.R.Cy)

Ef:Z(X1V1DyDI;T01Tdch!Cd'd)' (BB)

The study of the stability of a fluid layer solely subject to APPENDIX C: REMARKS ON LORENZ-BASED
a concentration gradief45] shows an identical criterion for TRUNCATED MODELS
a solutal numbeR (here defined in the followingwhich All Lorenz truncated models follow from Saltzman bidi-

replaces the Rayleigh number. It is also known that in thenensional equations, in which the convective terms are con-
thermohaline convection, i.e., in a binary fluid subject tosjdered[22,46]. Choosing, for instance, the andz coordi-
independent temperature and concentration gradients and #@tes, and introducing the stream functipin such a way as
“ideal” (conductive and permeabldoundary conditions, tq preserve the continuity equation in the ) plane, they

one has stability if and only if2,7,19 are[11]
R—R—2l (A2) 2
TRERT AR ¢
4 _ 2 90 9 4
_ ot - {l//'V lp}xz+g ap X ')’max +vV l//,
Pz P2 _ 27,
e — N\ T— R=—r7,
(P+P)(1+P) (P+P)(1+P) 4 i—fz—{df’@}xﬁai—wJFXVzB, 1)
X

wherea = a,=2""27 again andR=gby,,d* vD is the so-
lutal (Rayleigh number; it contains the concentration gradi- a¢ Y _
entb=Ac/d (negative if the solute is denser at the upper {4, &t b—+DV2E+(C i+ §)

: = C 1> TETSE o ax
surface, while y,=pq 1(aplﬁcl)TP is defined in the devel-
opment of the density functiofp=po(1—apdT+ yndcy). X(1—¢,—&D'V?26,
The quantitiesP=v»/y and P=v/D are the Prandtl and
Schmidt numbers, respectively. wheret is the time,6 is the temperature perturbation, afd
and'c, are the concentration gradient and the vertical linear
APPENDIX B: DISCUSSION OF THE STATIONARY concentration profile at the stationary state, respectively;
SOLUTION also, V#* =V2.(V?*), and having introduced the Jacobi de-

_ . _ ~ terminant,{f,g},= (9f/9x) (99! 9z) — (9f19z) (9g! IX).
The stationary solutions of thermohaline convection- |f one supposes that the spatial parts/ofd and¢, which
based equations depend on the involved physical parametefigve to be determined, are developable in Fourier double
and, with regard to EqeAl), for any fixed values ok and  series with nondimensional and time-dependent complex co-

t, one has efficients, namely,

?koci:‘k( P,P_;G,E_,R,F\_),) = A]-_‘: (Xr VyD yTO |Td :CO ,Cd !d) oo

B1 — — —_
o ( ) lﬂ(X,Z, t ): m,n( t )el(maX-*-nTrZ),
The functionT', depends on the sign of the temperature gra- mn=-—c
dient AT and on the concentration gradieht,. In T’y are
explicitly included not onlyAT andAc,, as requested by the — — o
_ 0(}(’;77 t)= m n( t )el(maX-H‘MTZ), (CZ)

dependence oR on AT and of R on Acq, but also the M ™
boundary valued,, T4, c,, andcy (0 indicates the lower
plane, whiled indicates the upper plane e

With the Soret effect, two further parametéds and ¢, EXZ1)= (t)e(mat+nm2)
must be introduced; accordingly, ' mic—e ™" '



6810

the Galerkin procedure can be applied to EG) and(C2).

In development$C2), =yl x, 6=R6/|AT|, £ =R&l| AT,
X=x/d,Z=z/d, and t =(m2+a?)xt/d® are nondimen-

sional quantities, andT=ad and Ac,=bd are the dif-
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ferences in temperature and concentration of the boundaries

at mechanical equilibrium; further, we a1, 46 W a(1)=
TN =P (0), Tra() =T SR~ TEH(), and
Omn(1) =0 (1) =IO (1).
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